NFAs to DFAs Examples Lecture 8 Section 2.3

Robb T. Koether
Hampden-Sydney College

Fri, Sep 9, 2016

Outline

(1) Examples
(2) Creating M^{R} from M
(3) Programming Assignment

4 Assignment

Outline

(9) Examples

(2) Creating M^{R} from M

(3) Programming Assignment

4 Assignment

Example

Example (Even Number of a's and b's)

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$.
- Let $L_{1}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of a's $\}$.
- Let $L_{2}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of b's $\}$.
- Convert the NFA that accepts $L_{1} \cup L_{2}$ to a DFA.

Example

Example (Even Number of a's and b's)

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$.
- Let $L_{1}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of a's $\}$.
- Let $L_{2}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of b's $\}$.
- Convert the NFA that accepts $L_{1} \cup L_{2}$ to a DFA.
- Convert the NFA that accepts $L_{1} L_{2}$ to a DFA.

Example

Example (Even Number of a's and b's)

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$.
- Let $L_{1}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of a's $\}$.
- Let $L_{2}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of b's $\}$.
- Convert the NFA that accepts $L_{1} \cup L_{2}$ to a DFA.
- Convert the NFA that accepts $L_{1} L_{2}$ to a DFA.
- In the last example, process ababb, abaabb, and aababb.

Outline

(1) Examples

(2) Creating M^{R} from M

(3) Programming Assignment

4 Assignment

Creating M^{R} from M

- Given a machine M that accepts a language L, we can construct a machine M^{R} that accepts the language L^{R} as follows.
- Reverse all the arrows in the transition diagram for M.
- Create a new start state q_{0}^{\prime}.
- Create λ-moves from q_{0}^{\prime} to each of M 's final states.
- Make all of M 's final states nonfinal.
- Make M's start state final.

Creating M^{R} from M

A generic DFA

Creating M^{R} from M

Reverse all the arrows

Creating M^{R} from M

Create a new start state

Creating M^{R} from M

Add λ-moves to the final states

Creating M^{R} from M

Make the final states non-final

Creating M^{R} from M

Make the original start state the final state

Example

Example (Binary Adder)

- Build a DFA that will recognize a correct binary addition by reading the columns from left to right.

Creating M^{R} from M

The original DFA

Creating M^{R} from M

Reverse all the arrows

Creating M^{R} from M

Create a new start state

Creating M^{R} from M

Add λ-moves to the final states

Creating M^{R} from M

Make the final states non-final

Creating M^{R} from M

Make the original start state the final state

Example

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$.
- Build a DFA that will recognize strings in which aa is always followed immediately by either \mathbf{b} or \mathbf{c} and $\mathbf{b b}$ is always followed immediately by \mathbf{c}.

Example

Example

- Build a DFA that will accept the reverse of the language of the previous example.

Example

Outline

(1) Examples
(2) Creating M^{R} from M
(3) Programming Assignment
(4) Assignment

Programming Assignment

Programming Assignment

- To be collected Wednesday, September 14.
- Use JFLAP to build the following automata.
(1) A DFA that will accept $L=\left\{\mathbf{a}^{n} \mid n \geq 1\right\} \cup\left\{\mathbf{b}^{n} \mathbf{a} \mid n \geq 1\right\}$.
(2) An NFA that will accept L^{*}, where L is as in the previous problem.
(3) A DFA that will validate base-3 addition problems, reading the columns from left to right.

Outline

(1) Examples

(2) Creating M^{R} from M

(3) Programming Assignment
4) Assignment

Assignment

Assignment

- Section 2.2 Exercises 19, 23
- Section 2.3 Exercises 3, 4, 5, 7, 9, 10, 16.

