NFAs to DFAs Examples

Lecture 8 Section 2.3

Robb T. Koether

Hampden-Sydney College

Fri, Sep 9, 2016

Outline

- Examples
- 2 Creating M^R from M
- Programming Assignment
- 4 Assignment

Outline

- Examples
- 2 Creating M^R from M
- 3 Programming Assignment
- 4 Assignment

Example (Even Number of a's and b's)

- Let $\Sigma = \{\mathbf{a}, \mathbf{b}\}.$
- Let $L_1 = \{ w \in \Sigma^* \mid w \text{ contains an even number of } \mathbf{a}$'s}.
- Let $L_2 = \{ w \in \Sigma^* \mid w \text{ contains an even number of } \mathbf{b}$'s $\}$.
- Convert the NFA that accepts $L_1 \cup L_2$ to a DFA.

Example (Even Number of a's and b's)

- Let $\Sigma = \{\mathbf{a}, \mathbf{b}\}.$
- Let $L_1 = \{ w \in \Sigma^* \mid w \text{ contains an even number of } \mathbf{a}$'s}.
- Let $L_2 = \{ w \in \Sigma^* \mid w \text{ contains an even number of } \mathbf{b}$'s $\}$.
- Convert the NFA that accepts $L_1 \cup L_2$ to a DFA.
- Convert the NFA that accepts L_1L_2 to a DFA.

Example (Even Number of a's and b's)

- Let $\Sigma = \{\mathbf{a}, \mathbf{b}\}.$
- Let $L_1 = \{ w \in \Sigma^* \mid w \text{ contains an even number of } \mathbf{a}$'s}.
- Let $L_2 = \{ w \in \Sigma^* \mid w \text{ contains an even number of } \mathbf{b}$'s}.
- Convert the NFA that accepts $L_1 \cup L_2$ to a DFA.
- Convert the NFA that accepts L_1L_2 to a DFA.
- In the last example, process ababb, abaabb, and aababb.

Outline

- Examples
- Creating M^R from M
- Programming Assignment
- 4 Assignment

Creating M^R from M

- Given a machine M that accepts a language L, we can construct a machine M^R that accepts the language L^R as follows.
 - Reverse all the arrows in the transition diagram for *M*.
 - Create a new start state q'_0 .
 - Create λ -moves from q'_0 to each of M's final states.
 - Make all of M's final states nonfinal.
 - Make M's start state final.

Reverse all the arrows

Create a new start state

Add λ -moves to the final states

Make the final states non-final

Make the original start state the final state

Example (Binary Adder)

• Build a DFA that will recognize a correct binary addition by reading the columns from left to right.

The original DFA

Reverse all the arrows

Create a new start state

Add λ -moves to the final states

Make the final states non-final

Make the original start state the final state

- Let $\Sigma = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}.$
- Build a DFA that will recognize strings in which aa is always followed immediately by either b or c and bb is always followed immediately by c.

 Build a DFA that will accept the reverse of the language of the previous example.

Outline

- Examples
- Creating M^R from M
- Programming Assignment
- Assignment

Programming Assignment

Programming Assignment

- To be collected Wednesday, September 14.
- Use JFLAP to build the following automata.
 - (1) A DFA that will accept $L = \{\mathbf{a}^n \mid n \ge 1\} \cup \{\mathbf{b}^n \mathbf{a} \mid n \ge 1\}$.
 - (2) An NFA that will accept L^* , where L is as in the previous problem.
 - (3) A DFA that will validate base-3 addition problems, reading the columns from left to right.

Outline

- Examples
- 2 Creating M^R from M
- 3 Programming Assignment
- 4 Assignment

Assignment

Assignment

- Section 2.2 Exercises 19, 23
- Section 2.3 Exercises 3, 4, 5, 7, 9, 10, 16.